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An Evolutionary Game Theory 
Model of Spontaneous Brain 
Functioning
Dario Madeo   1,2, Agostino Talarico1, Alvaro Pascual-Leone3, Chiara Mocenni   1,2  
& Emiliano Santarnecchi3,4

Our brain is a complex system of interconnected regions spontaneously organized into distinct 
networks. The integration of information between and within these networks is a continuous process 
that can be observed even when the brain is at rest, i.e. not engaged in any particular task. Moreover, 
such spontaneous dynamics show predictive value over individual cognitive profile and constitute a 
potential marker in neurological and psychiatric conditions, making its understanding of fundamental 
importance in modern neuroscience. Here we present a theoretical and mathematical model based 
on an extension of evolutionary game theory on networks (EGN), able to capture brain's interregional 
dynamics by balancing emulative and non-emulative attitudes among brain regions. This results in 
the net behavior of nodes composing resting-state networks identified using functional magnetic 
resonance imaging (fMRI), determining their moment-to-moment level of activation and inhibition 
as expressed by positive and negative shifts in BOLD fMRI signal. By spontaneously generating low-
frequency oscillatory behaviors, the EGN model is able to mimic functional connectivity dynamics, 
approximate fMRI time series on the basis of initial subset of available data, as well as simulate the 
impact of network lesions and provide evidence of compensation mechanisms across networks. Results 
suggest evolutionary game theory on networks as a new potential framework for the understanding of 
human brain network dynamics.

The last twenty years of network neuroscience have put forward the idea of the human brain being constantly 
integrating internal and external stimuli by means of oscillatory dynamics happening at different time and spa-
tial scales, even during so-called “resting-state”1,2. Notably, the identification of pivotal characteristics of brain 
spontaneous activity, e.g. (i) its capacity for simultaneous local and distributed information processing3,4, the 
(ii) organization into separate but integrated networks5–7 typically organized in a hierarchical fashion8,9, and 
the (iii) power-law distribution of network nodes importance3,5,10, have shown the complexity of brain func-
tioning and its similarity with other biological systems like the immune system11,12. Such organization is also 
responsible for -or the consequence of- individual variability in several traits within cognitive13–15 and personality 
domain(s)16; it shows a strong predictive power over evoked activity17 and functional alterations when patholog-
ical states arise18–20. Most importantly, it seems able to capture each individual brain’s uniqueness21, making the 
understanding of its origin a fundamental goal for both theoretical and applied neuroscience22.

The principles determining the moment-to-moment local vascular/metabolic supply giving rise to the func-
tional connectivity patterns observed via functional magnetic resonance imaging (fMRI) in the primate and 
non-primate brain are still under discussion. Several models have attempted at summarizing such organizational 
principles at different spatial and functional scales. For instance, Izhikevich has proposed models that capture the 
essence of neuronal behavior in different brain regions, (e.g. cortical, thalamic and hippocampal), looking at the 
basic rules behind the generations of cortical and subcortical oscillatory pattern23. Lewis et Al. (2010) have built 
multicellular models focusing on the core of cerebral energy metabolism, including central and mitochondrial 
metabolic pathways, in order to understand metabolic interactions between various classes of neuron24. On a 
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different spatial scale, Tononi and colleagues have suggested the possibility of capturing brain’s complexity by 
means of a balance in functional integration and segregation7,25,26.

Even though all these models are not easily reconcilable in a single framework, they all point towards a defini-
tion of the human brain as a complex system far from being organized by means of linear dynamics, in contrast 
to the vast majority of available models characterizing macroscale spontaneous fMRI dynamics. The analysis 
of spontaneous and evoked activity recorded using blood oxygenation level dependent (BOLD) signal is mostly 
based on functional connectivity - inferred by means of linear (e.g Pearson correlation, partial correlation) and 
nonlinear tools (e.g. mutual infomation)27,28 - and effective connectivity (e.g. Granger causality)29 metrics to pro-
vide a quantification of interregional interplay, while neglecting brain’s non-linear dynamics and stationarity of 
time series30. This might prevent the testing and identification of organizational principles underlying brain’s 
spontaneous functioning, as those commonly applied to the study of complex network dynamics.

Brain activity can be model according to rules based on the concept of competition and cooperation. 
Remarkably, such rules have been employed to describe the interaction between populations of neurons31–33, and 
later successfully used in statistical mechanics approaches like spin glass models34–38 for the inference of water 
diffusion in brain tissues during diffusion MRI measurements39,40. Statistical mechanics has been also used to 
describe the activity of nervous nets41 by using “replicator equations”, a mathematical tool widely used in the con-
text of evolutionary game theory (EGT)42–44. In the context of EGT, here we propose a non-linear model of brain 
spontaneous activity based on a novel extension of evolutionary game theory allowing the analysis of connectivity 
dynamics in complex graphs. In mathematics, Game Theory (GT) describes strategic interactions among indi-
viduals, where the reward of each player (i.e. any entity representing a node of a complex network, including e.g. 
social, metabolic and protein networks) depends on both its own and other players’ decisions. However, while GT 
might explain interactions between players as a process driven by individual benefit, it lacks explanatory power 
over more complex and counterintuitive dynamics, such as altruism or sexual partner selection45. EGT extends 
this concept by accounting for the dynamics of interactions between individuals in a game-like context driven by 
evolutionary mechanisms, which take into account – and contribute to explain – dynamics described in classical 
Darwinian evolution (e.g. competition, natural selection, heredity42,44).

In EGT, players are indistinguishable members of a large population, each one characterized by a pheno-
type which determines their strategy among the M available, when playing with any other randomly selected 
individual of the population. Each player’s payoff earned in the games is evaluated by specific functions, while 
the system dynamics are described by an ordinary differential equation defined in the M-simplex, namely, i.e. 
the replicator equation42. By looking at the evolution of strategies over time, models based on EGT are able 
to map specific strategies ascribable to competition or cooperation, allowing to capture spontaneous oscillatory 
behavior of complex biological and non biological systems. However, EGT only allows to describe the evolution 
of strategies at the level of the whole population: for example 50% of the population may choose a given strategy 
while the remaining 50% may choose another, with no information about the behavior of each single node/player. 
To address these limits, many studies have focused on games played by network populations46–48. To address this 
issue, an extension of EGT on graphs have been recently proposed by our group. In particular, the new model, 
named Evolutionary Games on Networks (EGN), describes the dynamical interactions of players arranged in a 
network49,50, by taking into account topographical constraints. Crucially, when the balance between competing 
and cooperating nodes in a given network is considered, the model generates low-frequency oscillatory behaviors 
that highly resemble those observed in resting-state fMRI data recorded in humans. By applying such model on 
real fMRI data, the present work demonstrates the possibility to model oscillatory inter-regional brain dynamics 
by means of EGN, also providing a preliminary evidence of its capacity to generate compensatory dynamics when 
network lesions are simulated. The following sections will introduce the rationale and specifics of the EGN model 
for fMRI BOLD data (Evolutionary Games for Brain Networks - EGN-B hereafter), where each brain region, 
assumed as an assembly of neurons composing anatomically or functionally defined regions, is modeled as a 
player in an evolutionary game. Under this assumption, we derived a model that incorporates the mechanisms of 
cooperation and competition among network nodes. The data used for modeling and parametric identification 
are described as part of the method sections, whereas results and their discussion are presented in a single section 
to ease the interpretation of findings. Additional details about the model, neuroimaging datasets and fMRI pre-
processing are included in Supplementary Information.

Results and Discussions
EGN-B model dynamics.  Game theory deals with the mathematical modeling of strategic interactions 
among agents. The result of such interactions is a payoff which an agent receives on the basis of his own selected 
strategy and and on the strategies of all his opponents. The agent attempts to choose his strategy in order to max-
imize this payoff.

In the simplest case of two strategies and two players, the payoff is described by means of a payoff matrix:
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where α = b1,1 − b2,1 and ι = b2,2 − b1,2
51, giving rise to an equivalent game. The interpretation of the introduced 

parameters is straightforward: when α > 0 (ι > 0), first strategy (second strategy) is preferred by player 1 if player 
2 chooses the same strategy. Negative values means instead that player 1 prefers to choose the opposite strategy of 
player 2. Finally, a null value represents indifference, no strategy is preferred whichever is the choice of the oppo-
nent.This simple class of games has been fruitfully used to describe cooperation and competition mechanisms in 
biology and social sciences, like prisoner’s dilemma and hawk and dove games44, and it has inspired us to model 
the mechanisms (strategies) of activation/inhibition observed during resting-state fMRI acquisitions as games 
played by different brain areas (i.e. players).

However, activation and inhibition evolves over time. Such dynamics are accounted by evolutionary games 
theory, which is used to describe the concept of biological selection and evolution, naturally incorporating an 
optimal decision making mechanism42,44. Evolutionary games on graphs49 is the extension to populations organ-
ized on a graphs, and it represents natural tool to describe brain dynamics since activation and inhibition of brain 
areas is a dynamical process which takes place over a networked structure.

Let xv(t) ∈[0, 1] be the level of activation of area v at time t: xv(t) = 1 stands for fully active, while xv(t) = 0 
means fully inactive. Conversely, 1 − xv(t) reads as the inactivation level of area v. For the sake of simplicity, from 
now on we will drop the dependence of xv(t) from time t.

Consider a simple case, a brain composed by only two areas v and w. At each time, v checks the level of activity 
of w (xw), evaluates the benefit of activating itself and eventually takes a decision affecting its subsequent level of 
activity xv. The decision is taken on the basis of activation and inactivation payoffs:
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where αv,w and ιv,w are activation and inactivation propensities of area v with respect to w (see the definition of 
payoff matrix B). When the propensities are both positive (αv,w > 0 and ιv,w > 0), area v has the attitude to emulate 
w; the activation and inactivation payoffs are proportional to the activation and inactivation levels, xw and 1 − xw 
respectively, of area w. Otherwise, area v can have a non-emulative attitude described by negative propensities 
(αv,w < 0 and ιv,w < 0). Propensities with different signs are not considered here since they correspond to uncondi-
tional activation ( > ∀p p xv w
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w, , ), i.e. the interaction with other areas does 
not affect the decision process of area v.
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, , the decision mechanism relies on their difference Δpv,w:
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More specifically, xv should increase when Δpv,w is positive, i.e. the payoff for activation is bigger than the 
payoff for inactivation, or should decrease otherwise. As a consequence, an area with emulative attitude should 
increase its activation level xv if:
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and should decrease in the other case (i.e. xw < dv). Conversely, non-emulative attitude should induce an increase 
of xv when xw < dv and a decrease for xw > dv. Moreover, the greater is the distance between xw and dv, the faster 
should be the change of xv over time. In the present work we assume that, given an ordered pair of regions (v,w), 
the propensities αv,w and ιv,w are both equal to −1 or to +1.

The previous assumptions allow us to write the replicator equation on graphs49:
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where av,w ≥ 0 are the entries of the adjacency matrix A, representing the strength of the influence of an area w on 
the area v (av,w = 0 if there is no influence). In equation (3), the variation of the activation level xv over time 
depends on sum of all payoffs earned through all the interactions of area v with neighbors specified by the adja-
cency matrix A. Equation (3) presents at least two steady states, corresponding to full activation (xv = 1) and full 
inactivation (xv = 0). Far from these points, since xv(1 − xv) is always positive, then the sign of the time derivative 
xv corresponds to the sign of ∑ Δ= a pw

N
v w v w1 , , . Therefore, if the weighted sum of all Δpv,w, which account for the 

results of all the interactions with neighboring areas, is positive, then area v will enforce its level of activation. 
Otherwise, it will tend to be inactive.

Figure 1 reports some examples of dynamics obtained by solving equation 3. The upper inset of Figure 1A 
shows the dynamics of two areas both characterized by emulative attitude, driving the two areas to converge 
to the same activation level. The middle inset depicts two areas with non-emulative attitudes. This mechanism, 
where the two areas converge to different levels of activation, is referred to as bistability, which is a common 
phenomenon in brain dynamics52,53. Finally, the lower inset shows an oscillating dynamics obtained when the 
two areas present different attitudes. Figure 1B depicts the dynamics produced using a more complex network of 
connections and attitudes, as well as clusters of areas. The adjacency matrix A of the EGN-B model is depicted in 
the upper right corner of Figure 1B.

Notice that the entries av,w of the adjacency matrix A, and propensities αv,w and ιv,w are the parameters of 
the mathematical model (3). Together with the initial conditions, they fully characterize the system dynamics, 
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providing a new layer of knowledge which integrates standard indicators like correlation coefficients, mutual 
information and Granger causality. More specifically, the EGN-B adjacency matrix A encapsulates information 
about inter-regional interactions from the point of view of the whole brain, considering this as the best overall 
configuration/strategy to maximize its evolutionary fitness. Moreover, the signs of parameters αv,w and ιv,w indi-
cates if a given area v will emulate or not area w. Using the assumptions that for each order pair brain regions 
(v,w), we have αv,w = ιv,w∈{ − 1, + 1}, then we can introduce the EGN-B signed connectivity matrix A′, whose 
entries are called connectivity parameters and are defined as follows:

α′ = ⋅ .a av w v w v w, , ,

It is clear that A = |A′|. An example of the signed matrix A′ is reported in Figure 2C. For further details on 
matrix A′, refer to Supplementary Information.

The connectivity parameters of the model have been estimated using the resting-state fMRI data described 
in the subsection Neuroimaging dataset information. Thanks to the linear dependence of EGN-B (3) on these 
parameters, the identification problem has been solved by means of a linear least square algorithm. The functional 
to be minimized is defined as:

θ θ= || − ||F Y z z( ) ( ) U( ) , (4)

where z represents the observed fMRI data, θ is the vectorized version of the EGN-B signed functional connectiv-
ity matrix A′, and Y(z) and U(z) are a vector and a matrix, respectively, built up on the basis of a time discretiza-
tion of the model. The functional in equation (4) is convex and it has only one solution θ̂ , namely:


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More details on model discretization and estimation process can be found in the Supplementary Information.

Simulating brain activity using EGN-B.  Figure 2B shows the fitting between real fMRI data (see 
Figure 2A) and EGN-B simulated data, produced using the estimated connectivity matrix A′ and the first sample 

Figure 1.  Schematic representation of the mathematical model. (A) reports prototypical examples of networks 
where only two areas are considered, and their corresponding dynamics. The propensities αv,w and ιv,w are set 
equal to 1 (emulative attitude, solid lines) or to −1 (non-emulative attitude, dashed lines). All the three possible 
scenarios are shown: both areas converge towards the same level of activation (upper inset), one converges to 
a fully active state and the other to a fully inactive state (middle inset), and the activation level of both areas 
are oscillatory (lower inset). (B) shows more complex network example including self loops and aggregation 
of areas. The richness of the dynamics depends on the presence of a higher number of nodes. The EGN-B 
adjacency matrix A of the network is reported in the upper right corner.
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of fMRI recordings as initial condition. Together with data and simulations, time course of the difference between 
activation and inactivation payoffs Δpv,w defined in equation 1 is also reported. It should be noticed that changes 
of this indicator mimics the variations of the dynamical variable xv as well as fluctuations in real data happening 
in the subsequent few seconds. This allows for prediction of BOLD data, and validates the notion of brain’s regions 
being guided by a continuous balancing between activation and inhibition strategies. Moreover, the estimated 
matrix A′ is reported in Figure 2C, showing different characteristics of the system when compared to the corre-
lation matrix, hereafter also called FC (functional connectivity matrix). Similarly to the FC matrix, A′ matrix is 
quasi-symmetric, however depicting a directed graph and describing asymmetric influences among nodes, given 
that a′v,w ≠ a′w,v.

Finally, the estimation performance of the EGN-B model has been tested by assuming different network sizes. 
In particular, we have estimated the adjacency matrix of networks with increasing size, from 2 up to 77 nodes - 
showing that the average fitting error between real and simulated data decreases with network size (see Figure S1–
A in the Supplementary Information). Additionally, the cross-correlation between real and simulated data raises 
up to the maximum feasible value 1 (see Figure S1–B in the Supplementary Information). Overall, the extraction 
of a 77 nodes network from the resting-state networks atlas performed in this study guarantees high performance 
in terms of fitting errors and similarity between real and simulated data. Future studies should investigate such 
relationship using multiple brain atlases providing even higher spatial resolution, as well as test the performance 
of EGN-B on both functionally and anatomically-defined brain parcellation schemes.

EGN-B connectivity and predictive power.  The difference between functional and EGN-B connectivity 
is visible in Figure 3A. Figure 3 also reports the performance of the proposed model in terms of temporal pre-
diction of real fMRI data. Specifically, model parameters have been estimated using a subset of available time 
points (i.e. first 90 fMRI samples) and the entire time series has been then simulated based on previously learned 
dynamics. Figure 3B shows the comparison between real and simulated data for the whole dataset. The model 
is able to appropriately predict brain dynamics for approximately 45 samples (≈2 minutes), with a drop in accu-
racy in subsequent time points. Figure 3C reports the prediction error obtained by estimating parameters using 
increasing window lengths, with a significant decrease in prediction error when 50% of available time points are 
considered for model estimation.

Figure 2.  Simulated BOLD signal and brain dynamics. In (A) functional MRI data for two illustrative brain 
regions (cyan and purple dots) are shown, along with the simulated signal obtained using the EGN-B model. 
(B) reports the real fMRI signal (red), the simulated fMRI signal (blue), and the moment-to-moment estimate 
of dominant strategy for a given node (dashed green line), i.e. the difference between activation and inhibition 
payoffs (Δpv,w). The delay between payoff and simulated data represents the predictive power of the model, 
which is able to determine the most preferable strategy of any network node approximately three seconds ahead 
of recorded data. In (C) are shown a network of 20 nodes composed by regions of interest from the functional 
atlas published in Dosenbach et al. 201058 (left), representing the default mode (node 1–5), visual (node 6–12) 
and dorsal attention networks (node 13–20), the corresponding EGN-B signed connectivity matrix A′ (center) 
and the simulated connectivity matrix (right).
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Given the theoretical limitations of using linear models to describe brain’s activity, Figure 3D depicts the 
comparison between performance of EGN-B and a linear model. Following the same procedure as above, the 
estimation was performed for a subset of data points and remaining time points were then simulated. Hence, 
error between simulated and real data is evaluated on the predicted time series. Prediction errors show that 
EGN-B model is more robust than its linear counterpart, with significantly smaller error values (up to 1/100th). 
In addition, all the simulations errors lie in a small range and have approximately the same standard devia-
tion. On the contrary, prediction errors for the linear model are visibly higher and display an unexpected 
individual variability among the subjects included in the analysis. The same holds for the standard deviation 
(see Supplementary Information for a more detailed analysis on the EGN-B and linear model comparison). 
Interestingly, when the entire set of available time points is used, the model is able to estimate changes in brain 
dynamics, allowing to reliably predict future network behavior even when changes in network structure are artifi-
cially introduced (see Figure S2 in the Supplementary Information). This is particularly relevant when lesions are 
simulated and the response of single network nodes is modeled.

Modeling impact of lesions.  EGN-B displays the ability to capture and simulate spontaneous BOLD-related 
brain connectivity patterns, allowing for testing the impact of planned lesions affecting a given resting-state net-
work of interest. Therefore, we additionally tested the response to perturbation of two resting-state networks, 
namely the default mode (DMN hereafter, composed by 4 nodes,)1 and the dorsal attention (DAN hereafter, 
7 nodes)54 networks. Details about fMRI preprocessing and network extraction are included in the Methods 
section of the manuscript. The two networks possibly represent the most widely replicated connectivity pattern 
of the human brain, with their negative correlation55 being considered a pivotal characteristic of spontaneous 
healthy56 and pathological brain functioning57. The two networks support different cognitive dynamics, with 
the DAN being involved in attention-related processes (e.g. directing attention towards salient stimuli, filtering) 
and the DMN being related to mind-wandering and memory. Even though the understanding of their response 

Figure 3.  Connectivity, directionality and model errors. (A) shows the different networks captured by 
functional connectivity fMRI analysis based on correlation coefficients (Pearson “r”), and the pattern of 
activation/inhibition expressed by coefficients of the EGN-B adjacency matrix A. The first captures strong 
positive within-network correlation, as well as negative ones between nodes of different networks. The EGN-B 
model unveils a more complex pattern, where positive and negative “directed” modulations are present even 
within a single network. (B) shows the predictive capabilities of the model by comparing real fMRI data of one 
node (red line) with simulated data (blue line). The latter has been obtained by using an EGN-B connectivity 
matrix estimated by means of the first 90 real data samples (yellow area). The green area highlights optimal 
prediction for approximately 45 samples, while prediction accuracy tends to drop thereafter. (C) shows the 
average prediction errors for different size of the estimation dataset across the entire sample. (D) depicts the 
differences between EGN-B and a linear model (reported in the Supplementary Information) in terms of mean 
and standard deviation of prediction errors in 40 healthy participants.
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to perturbation might have important clinical applications, the present analysis only focused on modeling their 
BOLD-related dynamics. Node - and corresponding connections - removal modeled via EGN-B induced differ-
ential changes in brain connectivity. Specifically, lesion to nodes of the DMN and DAN seems to induce different 
alterations of within and between-network dynamics. Lesion of the medial prefrontal cortex in the DMN does 
not affect within-network dynamics, while a change in the magnitude of the negative correlation with the Visual 
network (VN hereafter) is visible. Differently, lesion to the right middle prefrontal cortex node of the DAN mark-
edly switches the connectivity between DAN and VN, also inducing an increase in VN intrinsic connectivity. 
Interestingly, lesions also differed in terms of magnitude and sign of the observed effects: lesion to the DMN 
predominantly lead to a decrease in connectivity strength (−43%), with increases in connectivity reaching a 
maximum of 12% of the original correlation strength (Figure 4). Conversely, lesion to the DAN induced a mir-
rored effect, with increases in connectivity up to 41% and decreases equal to −13%. Overall, the EGN-B seems 
able to capture residual brain dynamics beyond spontaneous functioning. However, given the simplified nature 
of the example discussed here, findings might be interpreted carefully. For instance, the apparent symmetry in 
the response to lesion to the DMN and DAN (−43% and + 12%; + 41% and −13%) might be due to the limited 
dynamics being sampled: for the sake of simplicity, each network has been reduced to a lower number of nodes 
respect to what is measurable with resting-state fMRI data; this could dramatically decrease the complexity of 
response to perturbation, maximizing the loading on the dominant networks in the matrix (i.e. DMN, DAN). 
However, it must be noticed that the topography of the two responses show high dissimilarity, with a different 
involvement of the third (not-lesioned) network.

While lesioning procedure was not the main focus of the present investigation, future studies should test 
EGN-B on more complex matrices, capturing the dynamics of the entire set of well-known resting-state net-
works58–60. Recent investigations have tested the impact of lesion on functional connectivity by using agent-based 
models61, graph theory62,63 and network control theory64. Importantly, it must be noticed that a lesioning pro-
cedure like the present one only captures a “static” response to external perturbation, without providing any 
information about dynamic rearrangement in spontaneous BOLD fluctuations evolving over time. EGN-B might 
expand this scenario by providing non-linear estimates of such changes, which might be of relevance when inves-
tigating the effects of, for instance, non-invasive brain stimulation approaches done for both cognitive enhance-
ment purposes65,66 or to probe brain plasticity levels in clinical67 and cognitive68 contexts. EGN-B capacity to 
predict and model brain response to lesions should also be tested against other widely used analytical tools, like 
those applied to financial credit networks (to model response to financial default of banks69) or the immune net-
work (idiotypic network formation during onthogenesis through positive/negative selection70).

Evolutionary dynamics in the brain.  The present data demonstrate how principles and mechansims 
of evolutionary game theory might be able to capture the complexity of spontaneous, rhythmic brain activity. 
Even though this constitutes the first evidence of such application, the replicator equation has been used to 
describe several other biological phenomena, such as evolution driven by replication-selection43, mutation44,71, 
tumor progression72, bacterial network formation73, evolution of opinions74, cooperation44, political orientations75 

Figure 4.  Evolutionary game theory and network response to perturbation. Two distinct lesions to the default 
mode, dorsal attention and visual networks have been simulated using the EGN-B model. Nodes belonging 
to the DMN (node 5) and DAN (node 12) have been removed from the adjacency matrix and the resulting 
connectivity matrix has been estimated using EGN-B. A distinct pattern of rearrangement in connectivity is 
visible for the two simulations, with changes at both intra and inter-network level. The difference in connectivity 
strength between original and lesioned (i.e. residual) matrices highlights network-specific response to 
perturbation, with each lesion inducing differential amount of connectivity increase and decrease depending on 
the node being targeted (far right).
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and consensus control76, supporting its capacity to represent complex biological and non-biological dynamics. 
Results also highlight the importance of looking at self-emerging evolutionary trajectory rather than static game 
theoretical metrics, suggesting intriguing parallelism with principles and concepts pertaining to the field of evo-
lutionary biology and physiology77,78. In all the above mentioned applications, fitness represents a performance 
measure of a specific given strategy. In the context of fMRI connectivity analysis, we assume each brain region 
acting as a player in an evolutionary game, activating or inhibiting itself, "following" rules based on cooper-
ation and competition among regions. Here we argue that such balance in competition and cooperation - as 
captured by EGN-B - might be the optimal strategy for pursuing multiple non mutually exclusive goals related to 
moment-to-moment metabolic demands: (i) guarantee the needed supply of energy to each brain region in the 
context of a fixed-resources environment, and (ii) allow synchronization of brain regions belonging to specific 
networks, while also (iii) avoiding massive co-activation at whole brain level which might represent an exces-
sive metabolic cost. However, the argument of neuroenergetics goes against the notion of brain resources being 
always at neurons’ disposal (e.g. glycogen stored in astrocytes), with no real limitation in energy supply whatso-
ever. Yet representing only 2% of the total body mass, the brain consumes about 20% of the oxygen and 25% of the 
glucose available to the human body1, making the need for a perfectly balanced system less likely to be the case. 
An alternative view might take into account the optimization of information processing, which implies the ability 
to allocate resources across multiple functional systems in real time. Nevertheless, this implies that brain spon-
taneous activity also represents a continuous prediction of upcoming sensorial stimuli, a view which does not 
reflect the canonical definition of BOLD activity (i.e. mostly reflecting local instantaneous activity)79–81 and does 
not include any element of “prediction” with respect to other brain regions’ behavior, thus not fitting with an evo-
lutionary game theory design. However, recent evidence based on optical imaging in monkeys is challenging the 
nature of BOLD signal, suggesting that activity measured via fMRI might carry at least two types of information, 
related to local neuronal activity and, notably, anticipatory - or preparatory - task-related activity82. The adaptive, 
predictive component of BOLD signal might allow to infer which brain regions will require additional metabolic 
resources in the near future, therefore implying an ongoing balancing between regions activation and inhibition 
which may be mislabeled as a local phenomenon. This view has been also linked to the neuro-hemodynamics 
hypothesis (see the “hemo-neural” hypothesis in83), making them two non-mutually exclusive interpretations.

Methods
Neuroimaging dataset information.  Data were part of a multimodal data collection which includes a 
broad phenotypical characterization of 160 healthy subjects (age 19 to 45 years), as well as structural (anatomical 
and DTI) and functional (resting-state fMRI) neuroimaging data. A selection of subjects was performed to ensure 
(i) an age range of 19–25 years old (healthy, young adult), (ii) a balance between gender distribution, and (iii) that 
all subjects were right-handed. The selection resulted in a final sample of 84 right-handed subjects (41 males), 
with mean age of 29,54 years (standard deviation (SD) = 11). The institutional review boards of the University 
of Siena (Siena, Italy) and Beth Israel Medical Deaconess Center (Boston, MA, USA) approved the receipt and 
dissemination of the data. The present study has been approved by the ethical committee of “Policlinico Le Scotte” 
(Siena, Italy), and it has been performed in accordance with the relevant guidelines and regulations. Informed 
consents have been obtained from all the human participants of the study. Details about specific MRI sequences 
and data analysis are reported below.

Resting State fMRI.  Our brain is a complex system of interconnected regions spontaneously organized 
into distinct networks30,55,84. Such intrinsic organization of spontaneous brain activity is captured within the 
framework of brain connectivity analysis85. Differently from canonical task-fMRI paradigm where brain signal 
of interest is derived by contrasting subject’s activity during an active (e.g. a cognitive task) and a passive state, 
this approach relies on endogenous brain oscillations recorded during spontaneous brain activity, giving rise 
to temporally and spatially independent resting state networks22. Such methodology has been proven to hold 
enough information to allow the identification of pathological conditions (e.g. multiple sclerosis86, schizophre-
nia87 and Alzheimer88) as well as to identify correlates of several cognitive13,14,89 and psychological traits16 in 
healthy humans. Here we considered data collected during resting-state, while participants were asked to lay in 
the MRI scanner with their eyes opened, fixate a cross-air and mind-wander without focusing on any particular 
topic.

fMRI Data Preprocessing.  Information about the neuroimaging data are included as part of the 
Supplementary Information of the paper. Functional image preprocessing was carried out using SPM8 software 
(Statistical Parametric Mapping; http://www.fil.ion.ucl.ac.uk/spm/) and MATLAB 7.5 (MathWorks, MA, USA). 
The first five volumes of functional images were discarded for each subject to allow for steady-state magnetiza-
tion. EPI images were slice-time corrected using the interleaved descending acquisition criteria, and realigned 
and re-sliced to correct for head motion using a mean functional volume derived from the overall fMRI scans. 
Subject whose head motion exceeded 1.0 mm or rotation exceeded 1.0° during scanning were excluded. In order 
to obtain the better estimation of brain tissues maps, we implemented an optimized segmentation and normaliza-
tion process using DARTEL (Diffeomorphic Anatomical Registration using Exponentiated Lie Algebra)90 module 
for SPM8. Briefly, this approach is based on the creation of a customized anatomical template built directly from 
participants T1-weighted images instead of the canonical one provided with SPM (MNI template, ICBM 152, 
Montreal Neurological Institute). This allows a finer normalization into standard space and consequently avoids 
under - or over - estimation of brain regions volume possibly induced by the adoption of an external template. 
Hidden Markov Random Field model was applied in all segmentation processes in order to remove isolated 
voxels91. Customized tissue prior images and T1-weighted template were smoothed using an 8 mm full-width 
at half-maximum (FWHM) isotropic Gaussian kernel. Functional images were consequently non-linearly 

http://www.fil.ion.ucl.ac.uk/spm/
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normalized to standard space and a voxel resampling to (isotropic) 3 × 3 × 3 mm were applied. Linear trends 
were removed to reduce the influence of the rising temperature of the MRI scanner and all functional volumes 
were band pass filtered at (0.01Hz < f < 0.08Hz) to reduce low-frequency drift. Finally, a CompCor algorithm has 
been applied in order to control physiological high-frequency respiratory and cardiac noise92.

Lesioning procedure.  Even though measuring brain activity is fundamental to understand both human 
behavior and pathological conditions, a very informative approach resides in the measurement of brain’s abil-
ity to cope with external (e.g. concussion, anesthesia, noninvasive brain stimulation) and internal (e.g. brain 
tumor, stroke) perturbations68,93. Being able to predict brain’s response to these events could provide impor-
tant information for tailoring rehabilitation programs, as well as to move towards individualized interventions 
by leveraging individual’s resilience profile. Given EGN-B model’s ability to capture and simulate spontaneous 
BOLD-related brain dynamics, we additionally tested the response to perturbation of two resting-state func-
tional connectivity networks. The networks, representing the default mode (DMN hereafter, 4 nodes,)1 and dorsal 
attention (DAN hereafter, 7 nodes)54 networks, were obtained by applying the preprocessing routine described 
in the Supplementary Information of the manuscript. A third network, the visual network (VN), was included to 
evaluate cascade effects outside the networks being targeted (DMN, DAN). Single node removal was modeled and 
network response was simulated using EGN-B. The lesioning procedure was done by (i) modeling the original 
intact network using EGN-B, (ii) calculating the adjacency matrix, (iii) removing a given target node, and (iv) 
modeling the response of the network by simulating spontaneous oscillatory activity of each node in the network 
over time. Simulated BOLD time series have been created with a length equal to the original BOLD time series. 
Two different nodes were removed, respectively those showing highest within-network connectivity values in the 
DMN and DAN. Simulations were run on individual MRI data and average at the group level (N = 82). Results 
depict the average rearrangement observed across individuals when the abovementioned lesions are modeled. 
Changes in network connectivity were reported as the average difference in the functional connectivity (FC) 
between the original and lesioned (i.e. simulated using EGN-B) connectivity matrices, as well as percentage of 
changes respect to original (pre-lesion) FC coefficients.

Data availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Conclusion
The complexity of spontaneous brain functioning might follow the same evolutionary game theory principles 
that regulate fitness in many other complex biological systems. This implies a self-emergent structure based on 
a continuous balancing between each brain’s region tendency to imitate or compete against other regions, which 
give rise to inter-regional dynamics different from what usually observed with functional connectivity analysis. 
Non-linear estimates of causality between network nodes and BOLD signal prediction might provide new insight 
in brain functioning and help understanding the origin and substrates of brain’s organizational efficiency.
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